
Adam Blank Spring 2021Lecture 5

CS
3

Introduction to Software Design

CS 3: Introduction to Software Design

Design Patterns

What is a “Design Pattern”? 1

Definition
A design pattern is a standard solution to a common programming
problem.

Design Patterns can be. . .
high-level programming idioms
techniques for making code more flexible
shorthand for describing program design
vocabulary for communication & documentation

You should care about them because. . .
You could come up with these solutions on your own, but you
shouldn’t have to!
Programming languages do not build in solutions to every problem

What is a “Design Pattern”? 1

Definition
A design pattern is a standard solution to a common programming
problem.

Design Patterns can be. . .
high-level programming idioms
techniques for making code more flexible
shorthand for describing program design
vocabulary for communication & documentation

You should care about them because. . .
You could come up with these solutions on your own, but you
shouldn’t have to!
Programming languages do not build in solutions to every problem

What is a “Design Pattern”? 1

Definition
A design pattern is a standard solution to a common programming
problem.

Design Patterns can be. . .
high-level programming idioms
techniques for making code more flexible
shorthand for describing program design
vocabulary for communication & documentation

You should care about them because. . .
You could come up with these solutions on your own, but you
shouldn’t have to!
Programming languages do not build in solutions to every problem

Polymorphism via void * 2

Problem (Polymorphism)
We want to be able to write one function for multiple types, but we have
to explicitly specify a single type for each argument and return value.

Solution (void *)
A void * pointer can be cast to point to whatever type we like. If the
functions take in and return void *’s, it can handle pointers of any type;

Examples
void *malloc() and void free(void *)

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *))

Polymorphism via void * 2

Problem (Polymorphism)
We want to be able to write one function for multiple types, but we have
to explicitly specify a single type for each argument and return value.

Solution (void *)
A void * pointer can be cast to point to whatever type we like. If the
functions take in and return void *’s, it can handle pointers of any type;

Examples
void *malloc() and void free(void *)

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *))

Polymorphism via void * 2

Problem (Polymorphism)
We want to be able to write one function for multiple types, but we have
to explicitly specify a single type for each argument and return value.

Solution (void *)
A void * pointer can be cast to point to whatever type we like. If the
functions take in and return void *’s, it can handle pointers of any type;

Examples
void *malloc() and void free(void *)

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *))

Polymorphism with qsort 3

1 void sort_ints(int *arr, size_t n) {
2 qsort(arr, n, sizeof(int), compare_ints);
3 }

1 void sort_strings(char **arr, size_t n) {
2 qsort(arr, n, sizeof(char *), strcmp);
3 }

Aside: Modelling via Structs and Enums 4

The Output Tree (“Abstract Syntax Tree”)
We can represent any mathematical expression as a tree where the root is
the operation and the children are the operands.

For example, given 1+3∗4, we would have:

+

1 ∗

3 4

1 class Expression { }
2 class BinaryExpression { }
3 class AdditionExpression extends BinaryExpression {
4 Expression left, right;
5 }
6 class MultiplicationExpression extends BinaryExpression {
7 Expression left, right;
8 }
9 class NumberExpression extends Expression {

10 int value;
11 }

Aside: Modelling via Structs and Enums 4

The Output Tree (“Abstract Syntax Tree”)
We can represent any mathematical expression as a tree where the root is
the operation and the children are the operands.

For example, given 1+3∗4, we would have:

+

1 ∗

3 4

1 class Expression { }
2 class BinaryExpression { }
3 class AdditionExpression extends BinaryExpression {
4 Expression left, right;
5 }
6 class MultiplicationExpression extends BinaryExpression {
7 Expression left, right;
8 }
9 class NumberExpression extends Expression {

10 int value;
11 }

Aside: Modelling via Structs and Enums 4

The Output Tree (“Abstract Syntax Tree”)
We can represent any mathematical expression as a tree where the root is
the operation and the children are the operands.

For example, given 1+3∗4, we would have:

+

1 ∗

3 4

1 class Expression { }
2 class BinaryExpression { }
3 class AdditionExpression extends BinaryExpression {
4 Expression left, right;
5 }
6 class MultiplicationExpression extends BinaryExpression {
7 Expression left, right;
8 }
9 class NumberExpression extends Expression {

10 int value;
11 }

Aside: Modelling via Structs and Enums 4

The Output Tree (“Abstract Syntax Tree”)
We can represent any mathematical expression as a tree where the root is
the operation and the children are the operands.

For example, given 1+3∗4, we would have:

+

1 ∗

3 4

1 class Expression { }
2 class BinaryExpression { }
3 class AdditionExpression extends BinaryExpression {
4 Expression left, right;
5 }
6 class MultiplicationExpression extends BinaryExpression {
7 Expression left, right;
8 }
9 class NumberExpression extends Expression {

10 int value;
11 }

Subclassing via Structs 5

Problem (Inheritance)
We want to be able to model a relationship across types (e.g., a
BinaryExpression is a subtype of Expression).

Solution (Casting Structs)
If two structs have the same beginning layout, the larger one can be
cast to the smaller one. (What?)

Example
1 struct Int {
2 int i;
3 };
4
5 struct IntAndDouble {
6 int i;
7 double d;
8 };
9

10 struct DoubleAndInt {
11 double d;
12 int i;
13 };

Subclassing via Structs 5

Problem (Inheritance)
We want to be able to model a relationship across types (e.g., a
BinaryExpression is a subtype of Expression).

Solution (Casting Structs)
If two structs have the same beginning layout, the larger one can be
cast to the smaller one. (What?)

Example
1 struct Int {
2 int i;
3 };
4
5 struct IntAndDouble {
6 int i;
7 double d;
8 };
9

10 struct DoubleAndInt {
11 double d;
12 int i;
13 };

Subclassing via Structs 5

Problem (Inheritance)
We want to be able to model a relationship across types (e.g., a
BinaryExpression is a subtype of Expression).

Solution (Casting Structs)
If two structs have the same beginning layout, the larger one can be
cast to the smaller one. (What?)

Example
1 struct Int {
2 int i;
3 };
4
5 struct IntAndDouble {
6 int i;
7 double d;
8 };
9

10 struct DoubleAndInt {
11 double d;
12 int i;
13 };

Modelling Subclassing via Structs and Enums 6

+

1 ∗

3 4

1 enum ExpressionType {
2 NUMBER_EXPRESSION,
3 ADDITION_EXPRESSION,
4 MULTIPLICATION_EXPRESSION
5 };
6 struct Expression {
7 ExpressionType type;
8 };
9 struct BinaryExpression {

10 ExpressionType type;
11 Expression *left, *right;
12 };
13 struct NumberExpression {
14 ExpressionType type;
15 int value;
16 };

Modules via Header Files 7

How should we decompose the following program flow?

String

List of Strings

Tree of Structs

Modules via Header Files 8

Problem (Module Decomposition)
We want to be able to separate chunks of code into independent units.
This is one way of reducing complexity.

Solution (Header Files)
A header file is really just a listing of types and functions defined by the
corresponding C file. We can use it as a specification for what the
implementation should do.

Example
You’ve seen many of these, but here’s the AST example from the
previous slide.

Modules via Header Files 8

Problem (Module Decomposition)
We want to be able to separate chunks of code into independent units.
This is one way of reducing complexity.

Solution (Header Files)
A header file is really just a listing of types and functions defined by the
corresponding C file. We can use it as a specification for what the
implementation should do.

Example
You’ve seen many of these, but here’s the AST example from the
previous slide.

Modules via Header Files 8

Problem (Module Decomposition)
We want to be able to separate chunks of code into independent units.
This is one way of reducing complexity.

Solution (Header Files)
A header file is really just a listing of types and functions defined by the
corresponding C file. We can use it as a specification for what the
implementation should do.

Example
You’ve seen many of these, but here’s the AST example from the
previous slide.

Encapsulation via Incomplete Types 9

Problem (Encapsulation)
Users should not know or be able to edit our internal representation.

Solution (Incomplete Type Definitions)
Define the typedef in the header file, but put the actual definition
inside a C file.
Copy all data before returning it to the client.

Example
You’ve seen this plenty of times. (Most notably, you’ve done this with
body_t.)

Encapsulation via Incomplete Types 9

Problem (Encapsulation)
Users should not know or be able to edit our internal representation.

Solution (Incomplete Type Definitions)
Define the typedef in the header file, but put the actual definition
inside a C file.
Copy all data before returning it to the client.

Example
You’ve seen this plenty of times. (Most notably, you’ve done this with
body_t.)

Encapsulation via Incomplete Types 9

Problem (Encapsulation)
Users should not know or be able to edit our internal representation.

Solution (Incomplete Type Definitions)
Define the typedef in the header file, but put the actual definition
inside a C file.
Copy all data before returning it to the client.

Example
You’ve seen this plenty of times. (Most notably, you’ve done this with
body_t.)

Returning Multiple Values via Reference Arguments 10

Problem (Returning Multiple Values)
We would like to edit or return multiple variables in a function, but we
can only have one return value.

Solution (Reference Arguments)
Use indirection! Give the function pointers to the data to edit instead of
the data directly. Then, it can edit those arguments if it needs to.

Example
void swap(int *a, int *b)

void divrem(int *quotient, int *remainder)

void eat(char **buf, char *token)

Returning Multiple Values via Reference Arguments 10

Problem (Returning Multiple Values)
We would like to edit or return multiple variables in a function, but we
can only have one return value.

Solution (Reference Arguments)
Use indirection! Give the function pointers to the data to edit instead of
the data directly. Then, it can edit those arguments if it needs to.

Example
void swap(int *a, int *b)

void divrem(int *quotient, int *remainder)

void eat(char **buf, char *token)

Returning Multiple Values via Reference Arguments 10

Problem (Returning Multiple Values)
We would like to edit or return multiple variables in a function, but we
can only have one return value.

Solution (Reference Arguments)
Use indirection! Give the function pointers to the data to edit instead of
the data directly. Then, it can edit those arguments if it needs to.

Example
void swap(int *a, int *b)

void divrem(int *quotient, int *remainder)

void eat(char **buf, char *token)

Error/Exception Handling 11

Problem (Error State)
The program reaches an unknown or invalid state. We need to do
something to alert the user or client!

Solution (Three Solutions in Three Circumstances)
assert Non-Failure
Print error and exit

Return “error” value

Example
Let’s look at the AST example again.

Error/Exception Handling 11

Problem (Error State)
The program reaches an unknown or invalid state. We need to do
something to alert the user or client!

Solution (Three Solutions in Three Circumstances)
assert Non-Failure
Print error and exit

Return “error” value

Example
Let’s look at the AST example again.

Error/Exception Handling 11

Problem (Error State)
The program reaches an unknown or invalid state. We need to do
something to alert the user or client!

Solution (Three Solutions in Three Circumstances)
assert Non-Failure
Print error and exit

Return “error” value

Example
Let’s look at the AST example again.

Memory Ownership 12

Problem (Resource Management)
The program must manage resources (e.g., memory) and release them
exactly once.

Solution (Ownership)
Exactly one function should be responsible for allocation of a
resource
Exactly one function should be responsible for deallocation of a
resource

Example
Let’s look at the AST example again.

Memory Ownership 12

Problem (Resource Management)
The program must manage resources (e.g., memory) and release them
exactly once.

Solution (Ownership)
Exactly one function should be responsible for allocation of a
resource
Exactly one function should be responsible for deallocation of a
resource

Example
Let’s look at the AST example again.

Memory Ownership 12

Problem (Resource Management)
The program must manage resources (e.g., memory) and release them
exactly once.

Solution (Ownership)
Exactly one function should be responsible for allocation of a
resource
Exactly one function should be responsible for deallocation of a
resource

Example
Let’s look at the AST example again.

