
Adam Blank Spring 2022Lecture 1

CS
3

Introduction to Software Design



CS 3: Introduction to Software Design

Welcome to CS 3!



Outline

1 Correctness

2 Managing Complexity
Abstraction
Specification

3 Introducing C



Program Correctness 1

What does it mean for a program to be “correct”?

What does this code do?
_(__,___,____){___/__<=1?_(__,___+1,___ _):!(___%__)?_(__,___+1,0):___

%__==___ / __&&!____?(printf("%d\t",___/__),_(__,_ __+1,0)):___%__

>1&&___%__<___/__?_( __,1+ ___,____+!(___/__%(___%__))):___<__*__

?_(__,___+1,____):0;}main(){_(100,0,0);}

Programs must be written for people to read, and only incidentally for
machines to execute. (Abelson & Sussman)



Program Correctness 1

What does it mean for a program to be “correct”?

What does this code do?
_(__,___,____){___/__<=1?_(__,___+1,___ _):!(___%__)?_(__,___+1,0):___

%__==___ / __&&!____?(printf("%d\t",___/__),_(__,_ __+1,0)):___%__

>1&&___%__<___/__?_( __,1+ ___,____+!(___/__%(___%__))):___<__*__

?_(__,___+1,____):0;}main(){_(100,0,0);}

Programs must be written for people to read, and only incidentally for
machines to execute. (Abelson & Sussman)



Program Correctness 1

What does it mean for a program to be “correct”?

What does this code do?
_(__,___,____){___/__<=1?_(__,___+1,___ _):!(___%__)?_(__,___+1,0):___

%__==___ / __&&!____?(printf("%d\t",___/__),_(__,_ __+1,0)):___%__

>1&&___%__<___/__?_( __,1+ ___,____+!(___/__%(___%__))):___<__*__

?_(__,___+1,____):0;}main(){_(100,0,0);}

Programs must be written for people to read, and only incidentally for
machines to execute. (Abelson & Sussman)



Correctness 2

What “Program Correctness”?
The code has the right functionality

The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)



Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read

The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)



Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented

The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)



Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular

The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)



Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use

. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)



Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?

Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)



Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests

Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)



Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”

Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)



Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues

Ask someone experienced to review your code! (more on this later)



Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)



Managing Complexity 3

Bigger programs lead to bigger problems. . .

Small programs are simple and malleable
Big programs are complex and inflexible

In large programs, interactions become unmanagable

There are a lot of ways to mitigate this, but two of the most useful are:
Abstraction
Specification



Managing Complexity 3

Bigger programs lead to bigger problems. . .

Small programs are simple and malleable
Big programs are complex and inflexible

In large programs, interactions become unmanagable

There are a lot of ways to mitigate this, but two of the most useful are:
Abstraction
Specification



Managing Complexity 3

Bigger programs lead to bigger problems. . .

Small programs are simple and malleable
Big programs are complex and inflexible

In large programs, interactions become unmanagable

There are a lot of ways to mitigate this, but two of the most useful are:
Abstraction
Specification



Managing Complexity 3

Bigger programs lead to bigger problems. . .

Small programs are simple and malleable
Big programs are complex and inflexible

In large programs, interactions become unmanagable

There are a lot of ways to mitigate this, but two of the most useful are:
Abstraction
Specification



Abstraction 4

The essence of abstractions is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that
context. (John V. Guttag)

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code, it is generally
beneficial to combine them into one by abstracting out the varying parts.
(Benjamin C. Pierce)

Some Types of Abstraction
Procedural Abstraction. Splitting a program into functions that
each have a single purpose
Data Abstraction. Using ADTs and interfaces to make a boundary
between client and implementor

Example
The Caltech CS Introductory Curriculum



Abstraction 4

The essence of abstractions is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that
context. (John V. Guttag)

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code, it is generally
beneficial to combine them into one by abstracting out the varying parts.
(Benjamin C. Pierce)

Some Types of Abstraction
Procedural Abstraction. Splitting a program into functions that
each have a single purpose
Data Abstraction. Using ADTs and interfaces to make a boundary
between client and implementor

Example
The Caltech CS Introductory Curriculum



Abstraction 4

The essence of abstractions is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that
context. (John V. Guttag)

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code, it is generally
beneficial to combine them into one by abstracting out the varying parts.
(Benjamin C. Pierce)

Some Types of Abstraction
Procedural Abstraction. Splitting a program into functions that
each have a single purpose
Data Abstraction. Using ADTs and interfaces to make a boundary
between client and implementor

Example
The Caltech CS Introductory Curriculum



Abstraction 4

The essence of abstractions is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that
context. (John V. Guttag)

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code, it is generally
beneficial to combine them into one by abstracting out the varying parts.
(Benjamin C. Pierce)

Some Types of Abstraction
Procedural Abstraction. Splitting a program into functions that
each have a single purpose
Data Abstraction. Using ADTs and interfaces to make a boundary
between client and implementor

Example
The Caltech CS Introductory Curriculum



Curriculum 5

CS 1 CS 2 CS 3

Programming Data Structures Software Design

Python Java C

50 LOC 300 LOC 800 LOC



Course 6

CS 3 is a practical introduction to designing large programs in a low-level
language. Heavy emphasis is placed on documentation, testing, and
software architecture. Students will work in teams in two 5-week long
projects. In the first half of the course, teams will focus on testing and
extensibility. In the second half of the course, teams will use POSIX
APIs, as well as their own code from the first five weeks, to develop a
large software deliverable. Software engineering topics covered include
code reviews, testing and testability, code readability, API design,
refactoring, and documentation.



Week 7

Lecture on a software topic + team sync-up

Lab on C and C library skills (solo)

Project that builds on previous projects (group)
first half: physics engine
second half: game

Code review to discuss code quality (alternating with Adam/Sarah &
Mentor TAs)



Notable Policies 8

Missing more than two weeks of code reviews results in an
automatic F in the course.

To pass the course, you must get at least a “check” on every physics
engine project throughout the course.

You must log all work in the README in your repository. Instructions
for how to do this are posted on the course website.

You have been assigned two TA mentors who will work with you
throughout the quarter. We’ve divided course staff into these
groups; so, for project help, you should only go to your mentors.



Outline

1 Correctness

2 Managing Complexity
Abstraction
Specification

3 Introducing C



Specification 9

The most important property of a program is whether it accomplishes the
intention of its user. (C. A. R. Hoare)

A specification is a contract between...

Client/Implementor.
The client agrees to only rely on promised information
The implementor agrees to always support the promises

User/Manufacturer.
The user sets expectations and requirements (no surprises!)
The manufacturer doesn’t care how it’s used (isolation)

Types of Specification
Software Specification. “What game will you be implementing?
What are the pieces? When will they be delivered?”
Function Specification. “What are the requirements of this
function? What is true after it runs?”

Right now, we’ll focus on function specification.



Specification 9

The most important property of a program is whether it accomplishes the
intention of its user. (C. A. R. Hoare)

A specification is a contract between...

Client/Implementor.
The client agrees to only rely on promised information
The implementor agrees to always support the promises

User/Manufacturer.
The user sets expectations and requirements (no surprises!)
The manufacturer doesn’t care how it’s used (isolation)

Types of Specification
Software Specification. “What game will you be implementing?
What are the pieces? When will they be delivered?”
Function Specification. “What are the requirements of this
function? What is true after it runs?”

Right now, we’ll focus on function specification.



Specification 9

The most important property of a program is whether it accomplishes the
intention of its user. (C. A. R. Hoare)

A specification is a contract between...

Client/Implementor.
The client agrees to only rely on promised information
The implementor agrees to always support the promises

User/Manufacturer.
The user sets expectations and requirements (no surprises!)
The manufacturer doesn’t care how it’s used (isolation)

Types of Specification
Software Specification. “What game will you be implementing?
What are the pieces? When will they be delivered?”
Function Specification. “What are the requirements of this
function? What is true after it runs?”

Right now, we’ll focus on function specification.



Specification 9

The most important property of a program is whether it accomplishes the
intention of its user. (C. A. R. Hoare)

A specification is a contract between...

Client/Implementor.
The client agrees to only rely on promised information
The implementor agrees to always support the promises

User/Manufacturer.
The user sets expectations and requirements (no surprises!)
The manufacturer doesn’t care how it’s used (isolation)

Types of Specification
Software Specification. “What game will you be implementing?
What are the pieces? When will they be delivered?”
Function Specification. “What are the requirements of this
function? What is true after it runs?”

Right now, we’ll focus on function specification.



Specification 9

The most important property of a program is whether it accomplishes the
intention of its user. (C. A. R. Hoare)

A specification is a contract between...

Client/Implementor.
The client agrees to only rely on promised information
The implementor agrees to always support the promises

User/Manufacturer.
The user sets expectations and requirements (no surprises!)
The manufacturer doesn’t care how it’s used (isolation)

Types of Specification
Software Specification. “What game will you be implementing?
What are the pieces? When will they be delivered?”
Function Specification. “What are the requirements of this
function? What is true after it runs?”

Right now, we’ll focus on function specification.



Preconditions 10

Precondition
A precondition is a predicate that is required for the promises a function
makes to happen.

Example Preconditions:
For moveRight(int numberOfUnits):

//@requires numberOfUnits >= 0

For minElement(int[] array):

//@requires array.length > 0

For add(int index, int value):

//@requires 0 <= index <= size

Preconditions are important, because they explain method behavior to
the client.



Preconditions 10

Precondition
A precondition is a predicate that is required for the promises a function
makes to happen.

Example Preconditions:
For moveRight(int numberOfUnits):
//@requires numberOfUnits >= 0

For minElement(int[] array):
//@requires array.length > 0

For add(int index, int value):
//@requires 0 <= index <= size

Preconditions are important, because they explain method behavior to
the client.



Postconditions 11

Postcondition
A postcondition is a description of behavior that is guaranteed to be
true after a method has run (if the pre-conditions hold).

Example Postconditions:
For moveRight(int numberOfUnits):

//@ensures Increases the x coordinate of the circle
// by numberOfUnits

For minElement(int[] array):

//@ensures returns the smallest element in array

For add(int index, int value):

//@ensures Inserts value at index in the list;
// shifts all elements from index to the end
// forward one index

Postconditions are important, because they explain method behavior to
the client.



Postconditions 11

Postcondition
A postcondition is a description of behavior that is guaranteed to be
true after a method has run (if the pre-conditions hold).

Example Postconditions:
For moveRight(int numberOfUnits):
//@ensures Increases the x coordinate of the circle
// by numberOfUnits

For minElement(int[] array):
//@ensures returns the smallest element in array

For add(int index, int value):
//@ensures Inserts value at index in the list;
// shifts all elements from index to the end
// forward one index

Postconditions are important, because they explain method behavior to
the client.



Course Specification 12

1 /**
2 @requires You know how to program, at the level of CS 2, in
3 a compiled language
4 @requires You are interested in learning to write good software,
5 not just "software that passes the tests"
6 @requires You are willing and able to work on a team and learn
7 to be part of a team
8
9 @ensures You will have worked on two substantial codebases over

10 a non−trivial period of time
11 @ensures You will have experience learning how to use a new library
12 @ensures You will have experience writing code as part of a team
13 @ensures You will know C at the level necessary to succeed in CS 24
14 @ensures You will know how to debug C at the level necessary to
15 succeed in CS 24
16 */
17 letter course(...) {
18 ...
19 }



Outline

1 Correctness

2 Managing Complexity
Abstraction
Specification

3 Introducing C


	Correctness
	Managing Complexity
	Abstraction
	Specification

	Introducing C

