
Adam Blank Spring 2023Lecture 5

CS
3

Introduction to Software Design

CS 3: Introduction to Software Design

Design Patterns

What is a “Design Pattern”? 1

Definition
A design pattern is a standard solution to a common programming
problem.

Design Patterns can be. . .
high-level programming idioms
techniques for making code more flexible
shorthand for describing program design
vocabulary for communication & documentation

You should care about them because. . .
You could come up with these solutions on your own, but you
shouldn’t have to!
Programming languages do not build in solutions to every problem

What is a “Design Pattern”? 1

Definition
A design pattern is a standard solution to a common programming
problem.

Design Patterns can be. . .
high-level programming idioms
techniques for making code more flexible
shorthand for describing program design
vocabulary for communication & documentation

You should care about them because. . .
You could come up with these solutions on your own, but you
shouldn’t have to!
Programming languages do not build in solutions to every problem

What is a “Design Pattern”? 1

Definition
A design pattern is a standard solution to a common programming
problem.

Design Patterns can be. . .
high-level programming idioms
techniques for making code more flexible
shorthand for describing program design
vocabulary for communication & documentation

You should care about them because. . .
You could come up with these solutions on your own, but you
shouldn’t have to!
Programming languages do not build in solutions to every problem

Modelling Classes via Structs and Enums 2

The Output Tree (“Abstract Syntax Tree”)
We can represent any mathematical expression as a tree where the root is
the operation and the children are the operands.

For example, given 1+3∗4, we would have:

+

1 ∗

3 4

1 class Expression { }
2 class BinaryExpression { }
3 class AdditionExpression extends BinaryExpression {
4 Expression left, right;
5 }
6 class MultiplicationExpression extends BinaryExpression {
7 Expression left, right;
8 }
9 class NumberExpression extends Expression {

10 int value;
11 }

Modelling Classes via Structs and Enums 2

The Output Tree (“Abstract Syntax Tree”)
We can represent any mathematical expression as a tree where the root is
the operation and the children are the operands.

For example, given 1+3∗4, we would have:

+

1 ∗

3 4

1 class Expression { }
2 class BinaryExpression { }
3 class AdditionExpression extends BinaryExpression {
4 Expression left, right;
5 }
6 class MultiplicationExpression extends BinaryExpression {
7 Expression left, right;
8 }
9 class NumberExpression extends Expression {

10 int value;
11 }

Modelling Classes via Structs and Enums 2

The Output Tree (“Abstract Syntax Tree”)
We can represent any mathematical expression as a tree where the root is
the operation and the children are the operands.

For example, given 1+3∗4, we would have:

+

1 ∗

3 4

1 class Expression { }
2 class BinaryExpression { }
3 class AdditionExpression extends BinaryExpression {
4 Expression left, right;
5 }
6 class MultiplicationExpression extends BinaryExpression {
7 Expression left, right;
8 }
9 class NumberExpression extends Expression {

10 int value;
11 }

Modelling Classes via Structs and Enums 2

The Output Tree (“Abstract Syntax Tree”)
We can represent any mathematical expression as a tree where the root is
the operation and the children are the operands.

For example, given 1+3∗4, we would have:

+

1 ∗

3 4

1 class Expression { }
2 class BinaryExpression { }
3 class AdditionExpression extends BinaryExpression {
4 Expression left, right;
5 }
6 class MultiplicationExpression extends BinaryExpression {
7 Expression left, right;
8 }
9 class NumberExpression extends Expression {

10 int value;
11 }

Subclassing via Structs 3

Problem (Inheritance)
We want to be able to model a relationship across types (e.g., a
BinaryExpression is a subtype of Expression).

Solution (Casting Structs)
If two structs have the same beginning layout, the larger one can be
cast to the smaller one. (What?)

Example
1 struct Int {
2 int i;
3 };
4
5 struct IntAndDouble {
6 int i;
7 double d;
8 };
9

10 struct DoubleAndInt {
11 double d;
12 int i;
13 };

Subclassing via Structs 3

Problem (Inheritance)
We want to be able to model a relationship across types (e.g., a
BinaryExpression is a subtype of Expression).

Solution (Casting Structs)
If two structs have the same beginning layout, the larger one can be
cast to the smaller one. (What?)

Example
1 struct Int {
2 int i;
3 };
4
5 struct IntAndDouble {
6 int i;
7 double d;
8 };
9

10 struct DoubleAndInt {
11 double d;
12 int i;
13 };

Subclassing via Structs 3

Problem (Inheritance)
We want to be able to model a relationship across types (e.g., a
BinaryExpression is a subtype of Expression).

Solution (Casting Structs)
If two structs have the same beginning layout, the larger one can be
cast to the smaller one. (What?)

Example
1 struct Int {
2 int i;
3 };
4
5 struct IntAndDouble {
6 int i;
7 double d;
8 };
9

10 struct DoubleAndInt {
11 double d;
12 int i;
13 };

Modelling Subclassing via Structs and Enums 4

+

1 ∗

3 4

1 enum expression_type_t {
2 NUMBER_EXPRESSION,
3 ADDITION_EXPRESSION,
4 MULTIPLICATION_EXPRESSION
5 };
6 struct expression {
7 expression_type_t type;
8 };
9 struct binary_expression {

10 expression_type_t type;
11 expression *left, *right;
12 };
13 struct number_expression {
14 expression_type_t type;
15 int value;
16 };

Modules via Header Files 5

Problem (Module Decomposition)
We want to be able to separate chunks of code into independent units.
This is one way of reducing complexity.

Solution (Header Files)
A header file is really just a listing of types and functions defined by the
corresponding C file. We can use it as a specification for what the
implementation should do.

Example
You’ve seen many of these, but here’s the AST example from the
previous slide.

Modules via Header Files 5

Problem (Module Decomposition)
We want to be able to separate chunks of code into independent units.
This is one way of reducing complexity.

Solution (Header Files)
A header file is really just a listing of types and functions defined by the
corresponding C file. We can use it as a specification for what the
implementation should do.

Example
You’ve seen many of these, but here’s the AST example from the
previous slide.

Modules via Header Files 5

Problem (Module Decomposition)
We want to be able to separate chunks of code into independent units.
This is one way of reducing complexity.

Solution (Header Files)
A header file is really just a listing of types and functions defined by the
corresponding C file. We can use it as a specification for what the
implementation should do.

Example
You’ve seen many of these, but here’s the AST example from the
previous slide.

Encapsulation via Incomplete Types 6

Problem (Encapsulation)
Users should not know or be able to edit our internal representation.

Solution (Incomplete Type Definitions)
Define the typedef in the header file, but put the actual definition
inside a C file.
Copy all data before returning it to the client.

Example
You’ve seen this plenty of times. (Most notably, you’ve done this with
list_t.)

Encapsulation via Incomplete Types 6

Problem (Encapsulation)
Users should not know or be able to edit our internal representation.

Solution (Incomplete Type Definitions)
Define the typedef in the header file, but put the actual definition
inside a C file.
Copy all data before returning it to the client.

Example
You’ve seen this plenty of times. (Most notably, you’ve done this with
list_t.)

Encapsulation via Incomplete Types 6

Problem (Encapsulation)
Users should not know or be able to edit our internal representation.

Solution (Incomplete Type Definitions)
Define the typedef in the header file, but put the actual definition
inside a C file.
Copy all data before returning it to the client.

Example
You’ve seen this plenty of times. (Most notably, you’ve done this with
list_t.)

Returning Multiple Values via Reference Arguments 7

Problem (Returning Multiple Values)
We would like to edit or return multiple variables in a function, but we
can only have one return value.

Solution (Reference Arguments)
Use indirection! Give the pointers to the data to edit instead of the data
directly. Then, it can edit those arguments if it needs to.

Example
void swap(int *a, int *b)

void divrem(int *quotient, int *remainder)

void eat(char **buf, char *token)

Returning Multiple Values via Reference Arguments 7

Problem (Returning Multiple Values)
We would like to edit or return multiple variables in a function, but we
can only have one return value.

Solution (Reference Arguments)
Use indirection! Give the pointers to the data to edit instead of the data
directly. Then, it can edit those arguments if it needs to.

Example
void swap(int *a, int *b)

void divrem(int *quotient, int *remainder)

void eat(char **buf, char *token)

Returning Multiple Values via Reference Arguments 7

Problem (Returning Multiple Values)
We would like to edit or return multiple variables in a function, but we
can only have one return value.

Solution (Reference Arguments)
Use indirection! Give the pointers to the data to edit instead of the data
directly. Then, it can edit those arguments if it needs to.

Example
void swap(int *a, int *b)

void divrem(int *quotient, int *remainder)

void eat(char **buf, char *token)

Error/Exception Handling 8

Problem (Error State)
The program reaches an unknown or invalid state. We need to do
something to alert the user or client!

Solution (Three Solutions in Three Circumstances)
assert Non-Failure
Print error and exit

Return “error” value

Example
Let’s look at the AST example again.

Error/Exception Handling 8

Problem (Error State)
The program reaches an unknown or invalid state. We need to do
something to alert the user or client!

Solution (Three Solutions in Three Circumstances)
assert Non-Failure
Print error and exit

Return “error” value

Example
Let’s look at the AST example again.

Error/Exception Handling 8

Problem (Error State)
The program reaches an unknown or invalid state. We need to do
something to alert the user or client!

Solution (Three Solutions in Three Circumstances)
assert Non-Failure
Print error and exit

Return “error” value

Example
Let’s look at the AST example again.

Memory Ownership 9

Problem (Resource Management)
The program must manage resources (e.g., memory) and release them
exactly once.

Solution (Ownership)
Exactly one function should be responsible for allocation of a
resource
Exactly one function should be responsible for deallocation of a
resource

Example
Let’s look at the AST example again.

Memory Ownership 9

Problem (Resource Management)
The program must manage resources (e.g., memory) and release them
exactly once.

Solution (Ownership)
Exactly one function should be responsible for allocation of a
resource
Exactly one function should be responsible for deallocation of a
resource

Example
Let’s look at the AST example again.

Memory Ownership 9

Problem (Resource Management)
The program must manage resources (e.g., memory) and release them
exactly once.

Solution (Ownership)
Exactly one function should be responsible for allocation of a
resource
Exactly one function should be responsible for deallocation of a
resource

Example
Let’s look at the AST example again.

