
Adam Blank Winter 2024Lecture 1

CS
3

Introduction to Software Design

CS 3: Introduction to Software Design

Welcome to CS 3!

Outline

1 Correctness

2 Managing Complexity
Abstraction

3 Introducing C

Program Correctness 1

What does it mean for a program to be “correct”?

What does this code do?
_(__,___,____){___/__<=1?_(__,___+1,___ _):!(___%__)?_(__,___+1,0):___

%__==___ / __&&!____?(printf("%d\t",___/__),_(__,_ __+1,0)):___%__

>1&&___%__<___/__?_(__,1+ ___,____+!(___/__%(___%__))):___<__*__

?_(__,___+1,____):0;}main(){_(100,0,0);}

Programs must be written for people to read, and only incidentally for
machines to execute. (Abelson & Sussman)

Program Correctness 1

What does it mean for a program to be “correct”?

What does this code do?
_(__,___,____){___/__<=1?_(__,___+1,___ _):!(___%__)?_(__,___+1,0):___

%__==___ / __&&!____?(printf("%d\t",___/__),_(__,_ __+1,0)):___%__

>1&&___%__<___/__?_(__,1+ ___,____+!(___/__%(___%__))):___<__*__

?_(__,___+1,____):0;}main(){_(100,0,0);}

Programs must be written for people to read, and only incidentally for
machines to execute. (Abelson & Sussman)

Program Correctness 1

What does it mean for a program to be “correct”?

What does this code do?
_(__,___,____){___/__<=1?_(__,___+1,___ _):!(___%__)?_(__,___+1,0):___

%__==___ / __&&!____?(printf("%d\t",___/__),_(__,_ __+1,0)):___%__

>1&&___%__<___/__?_(__,1+ ___,____+!(___/__%(___%__))):___<__*__

?_(__,___+1,____):0;}main(){_(100,0,0);}

Programs must be written for people to read, and only incidentally for
machines to execute. (Abelson & Sussman)

Correctness 2

What “Program Correctness”?
The code has the right functionality

The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)

Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read

The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)

Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented

The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)

A

Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular

The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)

S

Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use

. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)

Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?

Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)

Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests

Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)

Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”

Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)

Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues

Ask someone experienced to review your code! (more on this later)

Correctness 2

What “Program Correctness”?
The code has the right functionality
The code is easy to read
The code is well-documented
The code is modular
The code is easy to re-use
. . .

How Can We Determine If A Program is Correct?
Write tests
Think about “edge cases”
Use automated tools to catch unintended issues
Ask someone experienced to review your code! (more on this later)

Managing Complexity 3

Bigger programs lead to bigger problems. . .

Small programs are simple and malleable
Big programs are complex and inflexible

In large programs, interactions become unmanagable

There are a lot of ways to mitigate this, but two of the most useful are:
Abstraction
Specification

Managing Complexity 3

Bigger programs lead to bigger problems. . .

Small programs are simple and malleable
Big programs are complex and inflexible

In large programs, interactions become unmanagable

There are a lot of ways to mitigate this, but two of the most useful are:
Abstraction
Specification

Managing Complexity 3

Bigger programs lead to bigger problems. . .

Small programs are simple and malleable
Big programs are complex and inflexible

In large programs, interactions become unmanagable

There are a lot of ways to mitigate this, but two of the most useful are:
Abstraction
Specification

Managing Complexity 3

Bigger programs lead to bigger problems. . .

Small programs are simple and malleable
Big programs are complex and inflexible

In large programs, interactions become unmanagable

There are a lot of ways to mitigate this, but two of the most useful are:
Abstraction
Specification

Abstraction 4

The essence of abstractions is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that
context. (John V. Guttag)

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code, it is generally
beneficial to combine them into one by abstracting out the varying parts.
(Benjamin C. Pierce)

Some Types of Abstraction
Procedural Abstraction. Splitting a program into functions that
each have a single purpose
Data Abstraction. Using ADTs and interfaces to make a boundary
between client and implementor

Example
The Caltech CS Introductory Curriculum

Abstraction 4

The essence of abstractions is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that
context. (John V. Guttag)

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code, it is generally
beneficial to combine them into one by abstracting out the varying parts.
(Benjamin C. Pierce)

Some Types of Abstraction
Procedural Abstraction. Splitting a program into functions that
each have a single purpose
Data Abstraction. Using ADTs and interfaces to make a boundary
between client and implementor

Example
The Caltech CS Introductory Curriculum

Abstraction 4

The essence of abstractions is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that
context. (John V. Guttag)

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code, it is generally
beneficial to combine them into one by abstracting out the varying parts.
(Benjamin C. Pierce)

Some Types of Abstraction
Procedural Abstraction. Splitting a program into functions that
each have a single purpose
Data Abstraction. Using ADTs and interfaces to make a boundary
between client and implementor

Example
The Caltech CS Introductory Curriculum

Abstraction 4

The essence of abstractions is preserving information that is relevant in a
given context, and forgetting information that is irrelevant in that
context. (John V. Guttag)

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code, it is generally
beneficial to combine them into one by abstracting out the varying parts.
(Benjamin C. Pierce)

Some Types of Abstraction
Procedural Abstraction. Splitting a program into functions that
each have a single purpose
Data Abstraction. Using ADTs and interfaces to make a boundary
between client and implementor

Example
The Caltech CS Introductory Curriculum

Curriculum 5

CS 1 CS 2 CS 3

Programming Data Structures Software Design

Python Java C

50 LOC 300 LOC 800 LOC

Course 6

CS 3 is a practical introduction to designing large programs in a low-level
language. Heavy emphasis is placed on documentation, testing, and
software architecture. Students will work in teams in two 5-week long
projects. In the first half of the course, teams will focus on testing and
extensibility. In the second half of the course, teams will use POSIX
APIs, as well as their own code from the first five weeks, to develop a
large software deliverable. Software engineering topics covered include
code reviews, testing and testability, code readability, API design,
refactoring, and documentation.

Outline

1 Correctness

2 Managing Complexity
Abstraction

3 Introducing C

Strings in C 7

A String in Java

1 String str = "hi";
2
3 // what’s actually happening:
4 char[] str = new char[2];
5 str[0] = ’h’;
6 str[1] = ’i’;
7 System.out.println(str);

for

A String in C?

1 char *str = malloc(2 * sizeof(char));
2 str[0] = ’h’;
3 str[1] = ’i’;
4 printf("%s\n", str);
5 free(str);

Strings in C 7

A String in Java

1 String str = "hi";
2
3 // what’s actually happening:
4 char[] str = new char[2];
5 str[0] = ’h’;
6 str[1] = ’i’;
7 System.out.println(str);

for

A String in C?

1 char *str = malloc(2 * sizeof(char));
2 str[0] = ’h’;
3 str[1] = ’i’;
4 printf("%s\n", str);
5 free(str);

Strings in C 8

Another Attempt

1 char *str = malloc(2 * sizeof(char));
2 strcpy(str, "hi");
3 printf("%s\n", str);
4 free(str);

I

3
)(X

->Mallor ((LEN +1) Sizeof (Char)
is

->mulls)(strln("bi")i)* Sizeorchar

Strings in C 9

Bad Java Code

1 List<Integer> list = new ArrayList<>();
2 list = List.of(1, 2, 3);

C Code?

1 char *str = malloc(2 * sizeof(char));
2 str = "hi";
3 free(str);

null
-
e

I list->
-
List -T

Strings in C 9

Bad Java Code

1 List<Integer> list = new ArrayList<>();
2 list = List.of(1, 2, 3);

C Code?

1 char *str = malloc(2 * sizeof(char));
2 str = "hi";
3 free(str);

I

