g A W N

© 00 N O o W N -

W W W WWwWwWwwWwWNRNRNNNNNRNRLDDRNRERR R H 2 B2 R B &
0 N O R ONRP,RO OV ONO00 R~ ONRLOO©OO®NOOGPBAW®NR O

CS 3: Introduction to Software Design

Practicum 1: strlib

strlib.h

char xstrlib_strcat(char *dest, const char xsrc);

int strlib_strcmp(const char xstrl, const char x*str2);
char xstrlib_strcpy(char *dest, const char xsrc);

char xstrlib_strncpy(char xdest, const char *xsrc, int n);
size_t strlib_strlen(const char xstr);

strlib.c

#include "strlib.h"

size_t strlib_strlen(const char x*str) {
int i = 0;
while (str[i++] '= '\0');

return i — 1;

}

char xstrlib_strcat(char xdest, const char xsrc) {
int strlen_of_dest = strlib_strlen(dest);
int i = 0;
for (i = 0; 1 < strlib_strlen(src); i++) {
dest[strlen_of_dest + i] = src[il];
}
dest[strlen_of_dest + i] = '\0';
}

int strlib_strcmp(const char xstrl, const char xstr2) {
if (strlib_strlen(strl) < strlib_strlen(str2)) {
return —1;
}
if (strlib_strlen(strl) > strlib_strlen(str2)) {
return 1;
}
if (strlib_strlen(strl) == strlib_strlen(str2)) {
int i = 0;
while (strl[i] != '\0' && strl[i] == str2[i]) {
i++;
}
if (strlib_strlen(strl) == i) {
return 0;
}
else {
return str2[i] — strl[i];
}
}




39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

char xstrlib_strcpy(char xdest, const char xsrc) {
int i = 0;
while (src[i] '= '"\0') {
dest[i] = src[il];
i++;
}
dest[i] = '\0';
return dest;

}

char xstrlib_strncpy(char xdest, const char *src, int n) {
int i = 0;
while (src[i] != '\0' & i < n) {
dest[i] = src[i];
i++;
}
if (i < n) {
dest[i] = '\0';
}

return dest;




CS 3: Introduction to Software Design

Practicum 1 Code Quality Iltems

= commenting::description

— A comment should describe the actual behavior that the piece of code has
— A comment should not be unclear, useless, or uninformative
All public functions should be docmented ONLY in the header file, NOT in the .c file!

Make sure to specify the type and purpose of each parameter and return value, as well as what the
function does at a high level.

— Code should not be “overcommented”

= design::encapsulation — Encapsulation is, at a high level, hiding data from clients of structures in the
.c files. It is the process of hiding the implementation of a module from the code that uses it. This is
important because if we need to change our underlying implementation, code that we have written that
uses it should still be able to function. Encapsulation also makes things more readable and understandable
for the user.

= design::expensive-function-calls — Function calls (especially for expensive ones) should be minimized
while still preserving the functionality of the code.

» design::extra-control-flow — Additional control structures should not be used if they can be simplified.

= design::includes — Code should not include a “.c” file rather than a header

» formatting::one-liner — Code should be broken down into multiple lines, with one statement per line.
Control loops and statements should be expanded into multiple lines instead of having their braces in one
line.

= functions::code-duplication-multiple-functions — Decompose significant amount of code duplication,
by factoring out common code from into helper functions. (this is usually any more than 10 lines) and
or lack of decomposition of functions into helper functions

» functions::code-duplication-single-function — Lines of code should not be duplicated within a single
function.

= variables::declaration-location — Declare variables in the narrowest possible scope, as close to its usage
as possible.

» variables::description — A variable is properly descriptive and not overly descriptive
= variables::magic-numbers — Use a const variable to appropriately abstract magic numbers from the code

= variables::type — Use a variable type that specifies the size explicitly (e.g., int32_t, size_t) rather than
an int or long



